Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Elife ; 122023 04 26.
Article in English | MEDLINE | ID: covidwho-2313805

ABSTRACT

Although France was one of the most affected European countries by the COVID-19 pandemic in 2020, the dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) movement within France, but also involving France in Europe and in the world, remain only partially characterized in this timeframe. Here, we analyzed GISAID deposited sequences from January 1 to December 31, 2020 (n = 638,706 sequences at the time of writing). To tackle the challenging number of sequences without the bias of analyzing a single subsample of sequences, we produced 100 subsamples of sequences and related phylogenetic trees from the whole dataset for different geographic scales (worldwide, European countries, and French administrative regions) and time periods (from January 1 to July 25, 2020, and from July 26 to December 31, 2020). We applied a maximum likelihood discrete trait phylogeographic method to date exchange events (i.e., a transition from one location to another one), to estimate the geographic spread of SARS-CoV-2 transmissions and lineages into, from and within France, Europe, and the world. The results unraveled two different patterns of exchange events between the first and second half of 2020. Throughout the year, Europe was systematically associated with most of the intercontinental exchanges. SARS-CoV-2 was mainly introduced into France from North America and Europe (mostly by Italy, Spain, the United Kingdom, Belgium, and Germany) during the first European epidemic wave. During the second wave, exchange events were limited to neighboring countries without strong intercontinental movement, but Russia widely exported the virus into Europe during the summer of 2020. France mostly exported B.1 and B.1.160 lineages, respectively, during the first and second European epidemic waves. At the level of French administrative regions, the Paris area was the main exporter during the first wave. But, for the second epidemic wave, it equally contributed to virus spread with Lyon area, the second most populated urban area after Paris in France. The main circulating lineages were similarly distributed among the French regions. To conclude, by enabling the inclusion of tens of thousands of viral sequences, this original phylodynamic method enabled us to robustly describe SARS-CoV-2 geographic spread through France, Europe, and worldwide in 2020.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Phylogeny , Pandemics , Europe/epidemiology , France/epidemiology
2.
Virus Res ; 323: 198950, 2022 Sep 29.
Article in English | MEDLINE | ID: covidwho-2239926

ABSTRACT

Human respiratory syncytial virus (RSV) is responsible of lower respiratory tract infections which may be severe in infants, elderly and immunocompromised adults. Europe and North-American countries have observed a massive reduction of RSV incidence during the 2020-2021 winter season. Using a systematic RSV detection coupled to SARS-CoV-2 for all adult patients admitted at the Foch hospital (Suresnes, France) between January and March 2021 (n = 11,324), only eight RSV infections in patients with prolonged RNA shedding were diagnosed. RSV whole-genome sequencing revealed that six and two patients were infected by RSV groups A and B, respectively. RSV carriage lasted from 7 to at least 30 days disregarding of RSV lineage. The most prolonged RSV shedding was observed in an asymptomatic patient. We detected novel patient-specific non-synonymous mutations in the G glycoprotein gene, including a double identical mutation in the repeated region for one patient. No additional mutation occurred in the RSV genome over the course of infection in the four patients tested for. In conclusion, our results suggest that the temporal shift in the RSV epidemic is not likely to be explained by the emergence of a high frequency, unreported variant. Moreover, prolonged RSV carriages in asymptomatic patients could play a role in virus spread.

3.
Sci Rep ; 12(1): 1094, 2022 01 20.
Article in English | MEDLINE | ID: covidwho-1634513

ABSTRACT

France went through three deadly epidemic waves due to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing major public health and socioeconomic issues. We proposed to study the course of the pandemic along 2020 from the outlook of two major Parisian hospitals earliest involved in the fight against COVID-19. Genome sequencing and phylogenetic analysis were performed on samples from patients and health care workers (HCWs) from Bichat (BCB) and Pitié-Salpêtrière (PSL) hospitals. A tree-based phylogenetic clustering method and epidemiological data were used to investigate suspected nosocomial transmission clusters. Clades 20A, 20B and 20C were prevalent during the spring wave and, following summer, clades 20A.EU2 and 20E.EU1 emerged and took over. Phylogenetic clustering identified 57 potential transmission clusters. Epidemiological connections between participants were found for 17 of these, with a higher proportion of HCWs. The joint presence of HCWs and patients suggest viral contaminations between these two groups. We provide an enhanced overview of SARS-CoV-2 phylogenetic changes over 2020 in the Paris area, one of the regions with highest incidence in France. Despite the low genetic diversity displayed by the SARS-CoV-2, we showed that phylogenetic analysis, along with comprehensive epidemiological data, helps to identify and investigate healthcare associated clusters.


Subject(s)
COVID-19 , Genome, Viral , Phylogeny , SARS-CoV-2/genetics , Adult , Aged , COVID-19/epidemiology , COVID-19/genetics , COVID-19/transmission , Female , Humans , Male , Middle Aged , Paris/epidemiology , Retrospective Studies
4.
Viruses ; 13(8)2021 08 19.
Article in English | MEDLINE | ID: covidwho-1367917

ABSTRACT

An Emergency Use Authorization was issued in the United States and in Europe for a monoclonal antibody monotherapy to prevent severe COVID-19 in high-risk patients. This study aimed to assess the risk of emergence of mutations following treatment with a single monoclonal antibody. Bamlanivimab was administered at a single dose of 700 mg in a one-hour IV injection in a referral center for the management of COVID-19 in France. Patients were closely monitored clinically and virologically with nasopharyngeal RT-PCR and viral whole genome sequencing. Six patients were treated for a nosocomial SARS-CoV-2 infection, all males, with a median age of 65 years and multiple comorbidities. All patients were infected with a B.1.1.7 variant, which was the most frequent variant in France at the time, and no patients had E484 mutations at baseline. Bamlanivimab was infused in the six patients within 4 days of the COVID-19 diagnosis. Four patients had a favorable outcome, one died of complications unrelated to COVID-19 or bamlanivimab, and one kidney transplant patient treated with belatacept died from severe COVID-19 more than 40 days after bamlanivimab administration. Virologically, four patients cleared nasopharyngeal viral shedding within one month after infusion, while two presented prolonged viral excretion for more than 40 days. The emergence of E484K mutants was observed in five out of six patients, and the last patient presented a Q496R mutation potentially associated with resistance. CONCLUSIONS: These results show a high risk of emergence of resistance mutants in COVID-19 patients treated with monoclonal antibody monotherapy.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , COVID-19/virology , SARS-CoV-2/genetics , Adult , Aged , Aged, 80 and over , Antibodies, Monoclonal, Humanized/administration & dosage , Antiviral Agents/administration & dosage , COVID-19/complications , Comorbidity , Drug Resistance, Viral/genetics , France , Humans , Male , Middle Aged , Mutation , SARS-CoV-2/drug effects , Severity of Illness Index
5.
J Infect Dis ; 223(9): 1522-1527, 2021 05 20.
Article in English | MEDLINE | ID: covidwho-1238204

ABSTRACT

BACKGROUND: Guidelines for stopping coronavirus disease 2019 patient isolation are mainly symptom-based, with isolation for 10 to 20 days depending on their condition. METHODS: In this study, we describe 3 deeply immunocompromised patients, each with different clinical evolutions. We observed (1) the patients' epidemiological, clinical, and serological data, (2) infectiousness using viral culture, and (3) viral mutations accumulated over time. RESULTS: Asymptomatic carriage, symptom resolution, or superinfection with a second severe acute respiratory syndrome coronavirus 2 strain were observed, all leading to prolonged infectious viral shedding for several months. CONCLUSIONS: Understanding underlying mechanisms and frequency of prolonged infectiousness is crucial to adapt current guidelines and strengthen the use of systematic polymerase chain reaction testing before stopping isolation in immunocompromised populations.


Subject(s)
COVID-19/immunology , Immunocompromised Host , SARS-CoV-2 , Superinfection/virology , Virus Shedding , Adult , Aged , COVID-19/diagnosis , COVID-19 Testing/methods , Humans , Male , Patient Isolation
SELECTION OF CITATIONS
SEARCH DETAIL